Images-loading

Specialization in Drip Irrigation

Drip irrigation is the most efficient method of irrigating. While sprinkler systems are around 75-85% efficient, drip systems typically are 90% or higher.

Drip irrigation is a technique in which water flows through a filter into special drip pipes, with emitters located at different spacing. Water is distributed through the emitters directly into the soil near the roots through a special slow-release device. If the drip irrigation system is properly designed, installed, and managed, drip irrigation may help achieve water conservation by reducing evaporation and deep drainage. Compared to other types of irrigation systems such as flood or overhead sprinklers, water can be more precisely applied to the plant roots. In addition, drip can eliminate many diseases that are spread through irrigation water. Drip irrigation is adaptable to any farmable slope and is suitable for most soils. In contrary to commercial drip irrigation, simple self-made systems are cheap and effective.

Advantage
  • Fertilizer and nutrient loss is minimized due to localized application and reduced leaching.
  • Water application efficiency is high if managed correctly
  • Field levelling is not necessary.
  • Fields with irregular shapes are easily accommodated.
  • Recycled non-potable water can be safely used.
  • Moisture within the root zone can be maintained at field capacity.
  • Soil type plays less important role in frequency of irrigation.
  • Soil erosion is lessened.
  • Weed growth is lessened.
  • Water distribution is highly uniform, controlled by output of each nozzle.
  • Labour cost is less than other irrigation methods.
  • Variation in supply can be regulated by regulating the valves and drippers.
  • Fertigation can easily be included with minimal waste of fertilizers.
  • Foliage remains dry, reducing the risk of disease.
  • Usually operated at lower pressure than other types of pressurised irrigation, reducing energy costs.
Disadvantages
  • Initial cost can be more than overhead systems.
  • The sun can affect the tubes used for drip irrigation, shortening their usable life.
  • If the water is not properly filtered and the equipment not properly maintained, it can result in clogging.
  • For subsurface drip the irrigator cannot see the water that is applied. This may lead to the farmer either applying too much water (low efficiency) or an insufficient amount of water, this is particularly common for those with less experience with drip irrigation.
  • Drip irrigation might be unsatisfactory if herbicides or top dressed fertilizers need sprinkler irrigation for activation.
  • Drip tape causes extra clean up costs after harvest. Users need to plan for drip tape winding, disposal, recycling or reuse.
  • Waste of water, time and harvest, if not installed properly. These systems require careful study of all the relevant factors like land topography, soil, water, crop and agro-climatic conditions, and suitability of drip irrigation system and its components.
  • In lighter soils subsurface drip may be unable to wet the soil surface for germination. Requires careful consideration of the installation depth.
  • The main purpose of drip irrigation is to reduce the water consumption by reducing the leaching factor. However, when the available water is of high salinity or alkalinity, the field soil becomes gradually unsuitable for cultivation due to high salinity or poor infiltration of the soil. Thus drip irrigation converts fields in to fallow lands when natural leaching by rain water is not adequate in semi arid and arid regions.